```
ON THE MAPPING CLASS GROUP OF SIMPLE 3-MANIFOLDS
                Klaus Johannson
Fakultät für Mathematik
    Universität Bielefeld
        4 8 0 0 ~ B i e l e f e l d ~ l ~
            West Germany
```

Let M denote an orientable and compact 3-manifold which is irreducible, boundary-irreducible and sufficiently large (notations as in [Wa 3]). Then M wi be called simple if (in the notations of [Wa 3]) every incompressible annulus or torus in M is boundary-parallel.

The object of this paper is to prove (see 3.2.):

Theorem. If M is a simple 3-manifold, then the mapping class group of M is finite.

It is known that every homotopy equivalence $f: M_{1} \rightarrow M_{2}$ between simple 3-manifolds can be deformed into a homeomorphism (see [Jo 1], [Jo 2], or [Swa 1]). Moreover, every isomorphism $\phi: \pi_{1} M_{1} \rightarrow \pi_{1} M_{2}$ is induced by a homotopy equivalence. Hence we have the following

Corollary. If M is a simple 3-manifold, then the outer automorphism group of $\pi_{1} M$ is a finite group.

To give a concrete example, let K be any non-trivial knot in S^{3} without companions (in the sense of [Schu 1]). Then the outer automorphism group of the knot group of K is a finite group, and the knot space of K admits only finitely many homeomorphisms, up to isotopy.

In order to prove the theorem, we shall use the concept of characteristic submanifolds as developed in [Jo 2], together with certain finiteness theorems of Haken and Hemion.

§ 1 Notations and preliminaries

Throughout this paper we work in the PL-category, and entirely in the framework of "manifolds with boundary-patterns" and "admissible maps" as used in [Jo 2]. For convenience we here repeat the necessary definitions.

Let M be a compact n-manifold, $n \leq 3$. A boundary-pattern for M consists of a set $\underset{=}{m}$ of compact, connected ($n-1$)-manifolds in ∂M, such that the intersection of any $i, i=2,3,4$, of them consists of (n-i)-manifolds.

The elements of $\stackrel{m}{=}$ are called the faces of (M, \underline{m}), and the completed boundary-pattern of (M, \underline{m}) is defined to be the set $\underset{=}{m}$ \{components of ($\partial \mathrm{M}-\mathrm{G} \in \underset{\underline{m}}{\mathrm{M}})^{-}$). A boundary-pattern is complete if it is equal to its completed boundary-pattern.

An admissible map $f:(N, \underline{n}) \rightarrow(M, \underline{m})$ is a map $f: N \rightarrow M$ satisfying

$$
\stackrel{n}{=} \dot{U}_{G \in \underline{m}} \text { components of } f^{-1} G \quad(\dot{U} \quad=\text { disjoint union }) .
$$

An admissible homotopy is a continuous family of admissible maps. Having defined "admissible homotopy" one also has defined "admissible isotopy".

An i-faced disc, $i \geq 1$, denotes a 2 -disc with complete boundary-pattern and i faces.

A boundary-pattern $\stackrel{m}{=}$ of M is useful if every admissible map $\mathrm{f}:(\mathrm{D}, \mathrm{d}) \rightarrow(\mathrm{M}, \underset{=}{m})$ can be admissibly deformed near a point, where (D, d) is an i-faced disc, $1 \leq i \leq 3$. It is a theorem [Jo 2] that this is equivalent to the statement that the boundary of every admissibly embedded i-faced disc, $1 \leq i \leq 3$, bounds a disc in ∂M such that $D \cap U_{G \in \mathbb{m}} \partial G$ is the cone on $\partial D \cap U_{G \in \underline{m}} \partial G$.

An admissible curve $f:(k, \partial k) \rightarrow(M, m)$ where $k=I$ or S^{l}, is called essential, if it cannot be admissibly deformed near a point. An admissible map $f:(N, \underline{n}) \rightarrow(M, \underset{M}{m})$ is called essential, if it maps essential curves to essential curves.

A 3-manifold will mean an orientable 3-manifold (not necessarily connected) 2 -manifolds (surfaces) are not generally required to be orientable or connected Whenever the notation of an annulus or Möbius band appears, it is to be understood that the boundary-pattern is the collection of its boundary-curves. A square is a 4 -faced disc. An inner square or annulus in a surface
 with its completed boundary-pattern, is a square or annulus.

A 3-manifold (M,m) will be called I-bundle or Seifert fibre space if M admits such a structure (see [Sei 1] [Wa l]), with fibre projection $p: M \rightarrow F$, in such a way that the sides of (M, \underline{I}) are either components of $\left(\partial M-p^{-1} \partial F\right)^{-}$or consist entirely of fibres.

The following submanifolds will play a crucial role throughout this paper.
1.1. Definition. Let $(M, \underset{=}{m})$ be a 3-manifold. An essential F-manifold, W in (M, \underline{m}) is an embedded 3-manifold such that

1. m induces a boundary-pattern of W such that every component of W is either an I-bundle or a Seifert fibre spacc.
2. $(\partial W-\partial M)^{-}$is essential in (M, m).
1.2. Definition. An essential F-manifold, V, in (M, m is called a characteristic submanifold if the following holds:
3. if W is any essential F-manifold in (M, \underline{m}), then W can be admissibly isotoped into V , and
4. if W^{\prime} is any union of components of $(M-V)^{-}$, then $V U^{\prime}$ is not an essential F -manifold.

The following facts about characteristic submanifolds will be used in this paper without proof. They are shown in [Jo 2].
1.3. Theorem. Let (M, \underline{m}) be an irreducible, sufficiently large 3-manifold with useful and complete boundary-pattern. Then the characteristic submanifold in ($\mathrm{M}, \underset{\mathrm{m}}{\mathrm{m}}$) exists and is unique, up to admissible ambient isotopy.
1.4. Theorem. Let (M, \underline{m}) be given as in 1.3 . and let V be the characteristic submanifold in (M, \underline{m}). Let $M^{\prime}=(M-V)^{-}$ and let $m^{\prime}=\left\{G \mid G\right.$ is component either of $M^{\prime} n \mathrm{~V}$, or of $G \cap H$ where $H \in m\}$.

Then for every essential square, annulus, or torus, T, in ($\mathrm{M}^{\prime}, \mathrm{m}^{\prime}$) either 1. or 2. holds

1. $T \cap V \neq \emptyset$ and the component of ($\left.\mathrm{M}^{\prime}, \mathrm{m}^{\prime}\right)$ which contains T is admissibly homeomorphic to $\mathrm{T} \times \mathrm{I}$.
2. $T \cap W=\emptyset$. and T is admissibly parallel in (M^{\prime}, m^{\prime}) to a side of $\left(\mathrm{M}^{\prime}, \underline{m}^{\prime}\right)$ which is contained in $\left(\partial \mathrm{V}-\partial \mathrm{M}^{-}\right.$.

In order to prove the theorem given in the introduction, we need a certain technical result on homeomorphisms of I-bundles. This will be established in 2.3.

Let G_{1} and G_{2} be two essential surfaces in ($F, \underset{\cong}{f}$) such that $\left(\partial G_{1}-\partial F\right)^{-}$and $\left(\partial G_{2}-\partial F\right)^{-}$are transversal. Then we say that G_{2} is in a very good position with respect to G_{1}, provided the number of points of $\left(\partial G_{2}-\partial F\right)^{-} n\left(\partial G_{2}-\partial F\right)^{-}$cannot be diminished and the number of components of $\left(\partial G_{2}-\partial F\right)^{-}$contained in G_{1} cannot be enlarged, using an admissible isotopy of G_{2}.

Now, for the following, let (X, \underline{x}) denote an I-bundle (twisted or not) with complete boundary-pattern, and with projection $p: X \rightarrow B$. Let F be the union of the lids of $(X, \underline{\underline{x}})$, i.e. $F=\left(\partial X-p^{-1} \partial B\right)^{-}$, and let $\underset{=}{f}$ be the boundary-pattern of F induced by x. Finally, denote by $\mathrm{d}:(\mathrm{F}, \underline{\underline{f}}) \rightarrow(\mathrm{F}, \underline{\underline{f}})$ the admissible involution given by the reflections in the I-fibres in X.
2.1. Lemma. Let G be an essential surface in ($\mathrm{F}, \underset{\mathrm{f}}{\mathrm{f}}$). Suppose that

$$
\begin{aligned}
& \mathrm{G} \text { is in a very good position with respect to } \mathrm{dG} \text {. Let } \\
& \mathrm{h}:(\mathrm{X}, \mathrm{x}) \rightarrow(\mathrm{X}, \mathrm{x}) \text { be an admissible homeomorphism with } \\
& \mathrm{h}\left|(\mathrm{~F}-\mathrm{G})^{-}=\mathrm{id}\right|(\mathrm{F}-\mathrm{G})^{-} \text {. Then there is an admissible isotopy } \mathrm{h}_{\mathrm{t}} \text {, } \\
& \mathrm{t} \in \mathrm{I} \text {, of } \mathrm{h}=\mathrm{h}_{0} \text {, with } \mathrm{h}_{\mathrm{t}}(\mathrm{G})=\mathrm{G} \text {, for all } \mathrm{t} \in \mathrm{I} \text {, such that } \\
& \mathrm{h}_{1}\left|(\partial \mathrm{~d} G-\partial \mathrm{F})^{-}=\mathrm{id}\right|(\partial \mathrm{d} \mathrm{G}-\partial \mathrm{F})^{-} \text {and } \mathrm{h}_{1}\left|(\mathrm{~F}-\mathrm{G})^{-}=\mathrm{id}\right|(\mathrm{F}-\mathrm{G})^{-} .
\end{aligned}
$$

Proof. Denote by $k_{1}, \ldots, k_{n}, n \geq 1$, all the components of ($\left.\partial G-\partial F\right)^{-}$. Suppose that $h \mid d k_{1} \cup \ldots \cup d k_{j}=i d$, for some $j \geq 1$, and consider $k=k_{j+1}$. It remains to show the existence of an admissible isotopy h_{t}, $t \in I$, of $h=h_{0}$, with $h_{t}(G)=G$, for all $t \in I$, such that

$$
h_{1} \mid d k_{1} \cup \ldots \cup d k_{j} u d k=i d \text { and } h_{1}\left|(F-G)^{-}=i d\right|(F-G)^{-}
$$

k is an essential curve (closed or not) in ($F, \underset{f}{f}$) since G is an essential surface in ($F, \underset{=}{f}$). The preimage $p^{-1}(p k)$ is, in general, not a square or annulus, for $k n d k$ need not be empty. But it is easy to see that there is always an I-fibre preserving immersion $g_{k}: k \times I \rightarrow X$ with $g_{k}(k \times I)=p^{-1} p k$, and $g_{k}(k \times 0)=k \quad$ and $g_{k}(k \times 1)=d k$.

Define $1=h^{-1}(d k)$. Observe that $h^{-1}|k=i d| k$, for $h\left|(F-G)^{-}=i d\right|(F-G)^{-}$, and that the immersion g_{k} and the homeomorphism h are both essential maps. Hence $h^{-1} g_{k}$ is an essential singular square or annulus in (X, \underline{x}) with k as one side. This implies that $h^{-1} g_{k}$ can be admissibly deformed (rel $k \times 0$) in (X, x) into a vertical map, i.e. into g_{k}. To see this observe that $\mathrm{p} \cdot \mathrm{h}^{-1} \mathrm{~g}_{\mathrm{k}}$ can be admissibly contracted (rel $\mathrm{k} \times 0$) in the base B into $\mathrm{ph}^{-1} \mathrm{~g}_{\mathrm{k}}(\mathrm{k} \times 0)$, and lift such a contraction to an admissible homotopy of $h^{-1} g_{k}$. The restriction of this homotopy to $(k \times 1) \times I$ defines an admissible deformation $f: k \times I \rightarrow F$ with $f|k \times 0=i d| l$ and $f|k \times 1=i d| d k$.

Case $1 d k \cap(\partial G-\partial F)^{-}$is empty.

In this case $d k$ does not meet $U_{1 \leq i \leq j} d k_{i}$ or $(\partial G-\partial F)^{-}$. The same holds for 1 : that 1 loes not meet $U_{1 \leq i \leq j} d k_{i}$ follows from $h \mid U_{1 \leq i \leq j} d k_{i}=i d, h(1)=d k, \quad$ and $\quad U_{\underline{1 \leq i \leq j}} d k_{i}=\emptyset$, and that 1 does not meet $(\partial G-\partial F)^{-}$follows from $h \mid(F-G)^{-}=i d$. Hence, since G is in a very good position with respect to $d G$, it follows that f can be admissibly deformed (relk $\times \partial I$) so that afterwards $S=f^{-1}\left((\partial G-\partial F)^{-} u \quad U_{1 \leq i \leq j} d k_{i}\right)$ is a system of pairwise disjoint curves which are admissibly parallel to the side $k \times 0$ of $k \times I$ (transversality lemma; see [Wa 2]).

If S is empty and $d k$ lies in $(F-G)^{-}$, there is nothing to show since $h\left|(F-G)^{-}=i d\right|(F-G)^{-}$. If S is empty and $d k$ lies in G, the existence of the required isotopy h_{t}, $t \in I$, follows from Baer's theorem (see $\S 1$ of [llall.

Thus we may suppose that S is non-empty. Then S splits $k \times I$ into a non-trivial system of squares or annuli. Let A ' be that one of them which contains $k \times 1$. As usual, using the theorem of Nielsen (see §1 of [Wa 3]), the existence of the map $f \mid A^{\prime}$ implies the existence of an inner square or annulus A in (F, f) with $(\partial A-\partial F)^{-}=t \cup d k$, where t is either $d k_{i}$, for some $1 \leq i \leq j$, or a component of $(\partial G-\partial F)^{-}$. Moreover, it follows from our choice of A^{\prime} that $A^{\circ} \cap\left((\partial G-\partial F)^{-} U U_{1 \leq i \leq j} d k_{i}\right)=\emptyset$. Consider $h^{-1} A$, and note that $h^{-1} t=t$, for $h \mid U_{1 \leq i \leq j} d k_{i}=i d$ and $h \mid(F-G)^{-}=i d$. Hence $h^{-1} A$ is also an inner square or annulus in (F, f) with $\left(h^{-1} A\right)^{\circ} n$ $\left((\partial G-\partial F)^{-} u \quad U_{1 \leq i \leq j} d k_{i}\right)=\emptyset, \quad$ and $\left(\partial h^{-1} A-\partial F\right)^{-}=h^{-1} d k u h^{-1} t=1 u t$. Now 1 is admissibly isotopic, via $h^{-1} A$, to t and then, via A, to $d k$. Extending these isotopies in the obvious way, we get the required isotopy $h_{t}, t \in I$, provided h does not interchange the components of $(\partial U(t)-\partial F)^{-}$, where $U(t)$ is some regular neighbourhood of t with $h(U(t))=U(t)$.

But the latter must be true, for otherwise h reverses the orientation of F which would imply that $G=F$ since $h\left|(F-G)^{-}=i d\right|(F-G)^{-}$.

Case $2 d k \cap(\partial G-\partial F)^{-}$is non-empty
G is an essential surface in ($\mathrm{F}, \underline{\mathrm{f}}$) which is in a very good position with respect to dG. Hence we may suppose that f is admissibly deformed (rel $k \times \partial I)$ so that $f^{-1}(\partial G-\partial F)^{-}$is a system of curves which join $k \times 0$ with $k \times 1$.

We first consider the subcase that $f^{-1}\left(U_{1 \leq i \leq j} d k_{i}\right)$ is empty. Let a_{1} be a component of $(1-G)^{-}$, and let F_{1} be the component of (F-G) ${ }^{-}$which contains a_{1}. Then a_{1} is an essential arc in F_{1}, for G is in a very good position with respect to $d G . \quad f \mid a_{1} \times I$ is an admissible homotopy of a_{1} in F_{1}, and since $h\left|(F-G)^{-}=i d\right|(F-G)^{-}$we have $a_{1}=f\left(a_{1} \times 0\right)=f\left(a_{1} \times 1\right)$. If $f \mid a_{1} \times 1$ cannot be admissibly deformed (rel $a_{1} \times \partial I$) into a_{1}, then, by Nielsen's theorem, F_{l} has to be an inner annulus in (F, f). Moreover, it follows that $F_{1} \cap U_{1 \leq i \leq j} d k_{i}=\emptyset$ since $f^{-1}\left(U_{1 \leq i \leq j} d k_{i}\right)=\emptyset$. Sliding a_{1} around F_{1} (if necessary), we may suppose that h is isotoped so that $f \mid a_{1} \times I$ now has the preceding property, for all components a_{1} of (dk-G) ${ }^{-}$ In this situation, the existence of the homotopy f shows that every component b_{2} of $1 \cap G$ can be admissibly deformed in G into a component a_{2} of $k n G$, using a deformation which is constant on ∂b_{2} and which does not meet $U_{1 \leq i \leq j} d k_{i}$. In fact, by Baer's theorem, these deformations may be chosen as isotopies. Extending all these isotopies in the obvious way, we get the required isotopy $h_{t}, t \in I$.

Now let us suppose that f cannot be admissibly deformed so that afterwards $f^{-1}\left(U_{l \leq i \leq j} d k_{i}\right)=\emptyset$ and that $f^{-1}(\partial G-\partial F)^{-}$consists of curves which join $k \times 0$ with $k \times 1$. Then f can be admissibly deformed (rel $k \times \partial I$) so that $f^{-1}\left(U_{1 \leq i \leq j} d k_{i}\right)$ is a non-empty system of curves which are parallel to $k \times 0$. This system splits $k \times I$ into squares or annuli. Let A^{\prime} be that one of them which contains $k \times 1$. Using this A^{\prime} the existence of the required isotopy h_{t} follows by a similar argument as in Case 1 . q.e.d.

For the next lemma let G be again an essential surface in (F, f), and suppose that G is in a very good position with respect to $d G$. Let U be a regular neighbourhood of $(\partial G-\partial F)^{-}$in (F,f). Denote by C the essential union of U and $d U$, i.e. the smallest essential surface in


```
2.2 Lemma. Suppose that ( \(\mathrm{X}, \underline{\mathrm{x}}\) ) is not the \(I\)-bundle over the annulus,
    torus, Möbius band, or Klein bottle. Let \(h:(X, x) \rightarrow(X, x)\)
    be an admissible homeomorphism with \(h\left|(F-G)^{-}=i d\right|(F-G)^{-}\).
    Then there is an admissible isotopy \(h_{t}, t \in I\), of \(h=h_{0}\), with
        \(h_{t}(G)=G\), for all \(t \in I\), such that \(h_{l} \mid p^{-1} p C=i d\) and
        \(h_{1} \mid(F-G)^{-}=i d\).
```

Proof. By 2.1., we may suppose that $h \mid(\partial G-\partial F)^{-}=i d$ and $h \mid(\partial d G-\partial F)^{-}=i d$. $h \mid F$ is orientation preserving, for $h \mid(F-G)^{-}=i d$. Hence we may suppose that $h \mid U=i d$ and $h \mid d U=i d$, and hence also $h|C=i d| C$. Observe that, by our choice of $C, \quad d C=C$.

Denote $N=p^{-1} p C$, and let n be the boundary-pattern of N induced by $\underline{\underline{x}}$. Then the fibration of ($\mathrm{X}, \underline{\underline{x} \text {) }}$ induces an admissible fibration of (N,n) as a system of I-bundles. C is then the union of all the lids of these I-bundles.

By its very definition, C is an essential surface in (F, f). Hence it follows that each component A of $(\partial N-\partial X)^{-}$is an essential square or annulus in (X, x). Since $h|F \cap \partial A=i d| F \cap \partial A$, we have that $h \mid A$, together with id $\mid A$, defines an admissible singular annulus or torus in (X, \underline{x}). Applying Nielsen's theorem to the product of this map with p, we find that this singular annulus or torus has to be inessential in (X, \underline{x}) (recall our suppositions on $(X, x))$. This in turn implies that $h \mid A$ can be admissibly
 of [Wa 3], this deformation may be chosen as an isotopy, and this isotopy can be extended to an admissible isotopy of h, which is constant on F. Therefore it follows that h can be admissibly isotoped (rel F) so that afterwards, $h(N)=N$.

Let $\left(N_{1}, \underline{\underline{n}}_{1}\right)$ be any component of (N, \underline{n}), and let $\overline{\underline{n}}_{1}$ be the completed boundary-pattern of $\left(N_{1} \underline{n}_{1}\right)$. Then $h \mid N_{1}:\left(N_{1}, \bar{n}_{1}\right) \rightarrow\left(N_{1}, \overline{\underline{n}}_{1}\right)$ is an admissible homeomorphism with $h\left|F \cap N_{1}=i d\right| F \cap N_{1}$. If $\left(N_{1}, \bar{n}_{1}\right)$ is not the I-bundle over the annulus or Möbius band, it follows, by an argument of 3.5. of [Wa 3], that $h \mid N_{1}:\left(N_{1}, \bar{n}_{1}\right) \rightarrow\left(N_{1}, \bar{n}_{1}\right)$ can be admissibly isotoped into the identity, using an isotopy which is constant on $N_{1} \cap \mathrm{~F}$. This is also true if ($\mathrm{N}_{1}, \overline{\underline{n}}_{1}$) is the I-bundle over the Möbius band. To see this, note that in this case N_{1} is a regular neighbourhood of a vertical Mobius band. Moreover, every homeomorphism of the Mobius band which is the identity on the boundary is isotopic (rel boundary) to the identity.

Let \bar{N} be a union of components of N such that $h|\bar{N}=i d| \bar{N}$. By what we have seen so far, we may suppose that \bar{N} is chosen so that $N-\bar{N}$ consists of I-bundles over the annulus.

So let N_{1} be any component of $N-\bar{N}$. Then $\left(N_{1}, \bar{n}_{1}\right)$ is an I-bundle over the annulus and we may suppose that $h \mid N_{1}:\left(N_{1}, \bar{n}_{1}\right) \rightarrow\left(N_{1}, \bar{n}_{1}\right)$ cannot be admissibly isotoped to the identity, using an isotopy which is constant on $N_{l} \cap \mathrm{~F}$. It remains to show that there is an admissible isotopy $h_{t}, t \in I$, of $h=h_{0}$, with $h_{t}(G)=G$ and $h_{t}(N)=N$, such that $h_{1}\left|\bar{N} \cup N_{1}=i d\right| \bar{N} \cup N_{1}$ and $h_{1}\left|(F-G)^{-}=i d\right|(F-G)^{-}$.

For this consider N_{1} as a regular neighbourhood of a vertical annulus A_{1} in ($\mathrm{X}, \underline{\mathrm{x}}$). Without loss of generality, one boundary component of A_{1}, say k_{1}, is a component of $(\partial G-\partial F)^{-}$and the other one, say k_{2}, is contained either in G or in $(F-G)^{-}$without meeting $(\partial G-\partial F)^{-}$(recall our choice of $\left.N_{1}\right)$.

If k_{2} lies in G, obscrve that $h \mid A_{1}: A_{1} \rightarrow A_{1}$ is isotopic to the identity, using an isotopy which is constant on k_{1}. Extending such an isotopy to an admissible isotopy of h which is constant outside a regular neighbourhood of N_{l}, we find the required isotopy h_{t}.

If k_{2} lies in $(F-G)^{-}$, then ∂A lies in $(F-G)^{-}$. It follows that, for one component X_{1} of $(X-N)^{-}$which meets N_{1}, all lids are contained in ($F-G)^{-}$. Let B be an essential vertical square in (X_{1}, \bar{x}_{1}) which meets N_{1}, where ${\underset{=}{1}}$ is the boundary-pattern induced by $\underset{\underline{x}}{ }$ and ${\underset{\underline{x}}{1}}$ the completed boundary-pattern of $\left(X_{1}, \underline{x}_{1}\right)$. Since $h\left|(F-G)^{-}=i d\right|(F-G)^{-}$, we have that $h \mid B$, together with id|B, defines an admissible singular annulus in (X_{1}, \bar{x}_{1}). By our suppositions on $h \mid N_{1}$, this singular annulus is essential in (X_{1}, \bar{x}_{1}) and cannot be admissibly deformed into a vertical map. Hence, by Nielsen's theorem, $\left(X_{1}, \bar{x}_{1}\right)$ is the I-bundle over the annulus or Möbius band. But it cannot be the I-bundle over the Möbius band, for $h \mid X_{1}:\left(X_{1}, \bar{X}_{1}\right) \rightarrow\left(X_{1}, \bar{x}_{1}\right)$ cannot be admissibly isotoped (rel F) into the identity since, by supposition, h / N_{1} cannot.

By what we have seen so far, $\left(X_{1}, \bar{x}_{1}\right)$ has to be the I-bundle over the annulus. Moreover, $h \mid X_{1}:\left(X_{1}, \bar{x}_{1}\right) \rightarrow\left(X_{1}, \bar{x}_{1}\right)$ cannot be admissibly isotoped into the identity, using an isotopy which is constant on $X_{1} \cap F$. Thus, in particular, X_{1} cannot meet \bar{N}. So, either $\left(\partial X_{1}-\partial X\right)^{-}$is connected or X_{1} meets a component N_{2} of N which is also an I-bundle over the annulus. Again, consider N_{2} as a regular neighbourhood of a vertical annulus A_{2} in (X, x). Without loss of generality, one boundary component, say 1_{1}, of A_{2}
is a component of $(\partial G-\partial F)^{-}$and so the other one, say l_{2}, is a component of $(\partial d G-\partial F)^{-}$. Since X_{l} is an I-bundle over the annulus, it follows that k_{1} and l_{1}, resp. k_{1} and 1_{2}, bound an inner annulus in (F,fif). Since G is in a very good position to $d G$, it follows that k_{1} and l_{1} bound an inner annulus, i.e. k_{1} lies in a component G_{1} of ($\left.F-G\right)^{-}$which is an inner annulus in (F, \underline{f}). Let H be the lid of $N_{1} \cup X_{1} \cup N_{2}$ which contains k_{2}. Observe that $h \mid N_{1} \cup X_{1} \cup N_{2}$ is admissibly isotopic in $N_{1} \cup X_{1} \cup N_{2}$ to the identity, using an isotopy which is constant on H. Extending this isotopy to an admissible isotopy of h which is constant outside of a regular neighbourhood of $N_{1} \cup X_{1} \cup N_{2}$ we find the required isotopy h_{t}. q.e.d.
 a very good position with respect to d .
2.3. Proposition. Suppose that (X, x) is not the I-bundle over the annulus, Mobius band, torus, or Klein bottle. Let $\mathrm{h}:(\mathrm{X}, \mathrm{x}) \rightarrow(\mathrm{X}, \mathrm{x})$ be an admissible homeomorphism with $\mathrm{h} \mid(\mathrm{F}-\mathrm{G})^{-}=\mathrm{id}$.

Then there is an admissible isotopy h_{t}, $t \in I$, of $h=h_{0}$, with $h_{t}(G)=G$, for all $t \in I$, such that $h_{1}\left|p^{-1} p H=i d\right| p^{-1} p H$, where H is the essential union of $(F-G)^{-}$and $(F-d G)^{-}$.

Proof. Let U be the regular neighbourhood of $(\partial G-\partial F)^{-}$in (F, f), and define C to be the essential union of U and $d U$. Then, by 2.2., we may suppose that $h\left|p^{-1} p C=i d\right| p^{-1} p C$ and $h\left|(F-G)^{-}=i d\right|(F-G)^{-}$. Let H^{\prime} be the union of C with all the components of $(F-C)^{-}$which lie either in (F-G) ${ }^{-}$ or in $(F-d G)^{-}$. Then observe that H is contained in H^{\prime}.

Let X_{1} be any component of $\left(X-p^{-1} p C\right)^{-}$with $X_{1} \cap F \subset H^{\prime}$. Then, by the definition of H^{\prime}, at least one lid of X_{1} lies in ($\left.F-G\right)^{-}$. It suffices to show that $h \mid X_{1}: X_{1} \rightarrow X_{1}$ is admissibly isotopic to the identity, using an isotopy which is constant on $\left(\partial X_{1}-\partial X\right)^{-}$and all the lids of X_{1} which lie in ($\mathrm{F}-\mathrm{G})^{-}$. By our suppositions on h, this follows by an argument of 3.5 of [Wa 3] (recall our choice of X). q.e.d.
3.1. Lemma. Let (M, m) be a twisted I-bundle, (N, n) be a product I-bundle, and $\mathrm{p}=(\mathrm{N}, \mathrm{n}) \rightarrow(\mathrm{M}, \mathrm{m})$ be an admissible 2-sheeted covering. Then every admissible homeomorphism, h, of (M, m) can be lifted to an admissible homeomorphism, g, of ($\mathrm{N}, \underline{\mathrm{n}} \mathrm{N}$) i.e. $\mathrm{p} \cdot \mathrm{h}=\mathrm{g} \cdot \mathrm{p}$.

Proof. One first proves as in (5.5.) of [Wa l] that every homeomorphism of (M, m) can be admissibly isotoped into a fibre preserving one. Hence 3.1. is proved if we show the statement of 3.1. , for every non-orientable surface $(F, \underset{\underline{f}}{f})$ and orientable 2 -sheeted covering $q:(G, \underline{g}) \rightarrow(F, \underline{f})$. For this we may restrict ourselves to the case that $\underset{~ f}{f}$ consists of all the boundary curves of F Then we may identify each boundary component to a point. Hence we suppose that F is closed and that h is a homeomorphism which maps a set of points $x_{1}, \ldots, x_{n}, n \geq 0$, to itself. Using [Li 1] and [Li 2], it is not difficult to show (see [Jo 2] that h is isotopic (rel x_{i}) to some product of the following homeomorphisms:

1. f is a Y-homeomorphism (in the sense of [Li 2]) with $g\left(x_{i}\right)=x_{i}$, for all $1 \leq i \leq n$.
2. $\quad \alpha_{i j}, 1 \leq i<j \leq n$, is the rotation along a fixed simple closed, 2-sided curve, k, in F, with $k \cap U x_{i}=x_{i} U x_{j}$, which interchanges x_{i} with x_{j} and which is the identity outside of a regular neighbourhood of k.
3. $\quad \beta_{i}, l \leq i \leq n, i s$ the end of an isotopy which moves the point x_{i} once around a fixed simple closed, 1-sided curve, k, in F, with $k \cap U x_{i}=x_{i}$, and which is constant outside of a regular neighbourhood of k.
4. g is a Dehn twist, i.e. a homeomorphism which is the identity outside a regular neighbourhood of a fixed simple closed, 2 -sided curve, k, with $k \cap U x_{i}=\emptyset$.

Observe that the preimage under g of every l-sided, simple closed curve is connected since G is orientable. Using this fact, it is an easy exercise to show that all homeomorphisms of 1. - 3. can be lifted. Now we claim that the preimage under q of every 2 -sided, simple closed curve k, in F is disconnected. To see this, fix a regular neighbourhood $U(k)$ of k, and let $U\left(p^{-1} k\right)$ be the preimage of $U(k)$ under p. The non-trivial covering
translation, $d, \operatorname{maps} U\left(p^{-1} k\right)$ to itself. Moreover, it follows that the restriction $d U\left(p^{-1} k\right)$ is orientation-reserving since d is orientationreversing. Hence, since d is a fixpoint free, d interchanges the boundary components of $\mathrm{U}\left(\mathrm{p}^{-1} \mathrm{k}\right)$, if $\mathrm{U}\left(\mathrm{p}^{-1} \mathrm{k}\right)$ is connected (i.e. an annulus). But this is impossible since k is 2 -sided. Thus our claim follows, and so, of course, every Dehn twist of F can be lifted to G. q.e.d.

An irreducible and sufficiently large 3 -manifold ($M, \underset{\approx}{m}$) is called simple if every essential square, annulus, or torus in (M, \underline{m}) is admissibly parallel to some side of (M, \underline{m}). The mapping class group $H(M, \underset{\equiv}{m})$ is defined to be the group of all admissible homeomorphisms of ($M, \underset{=}{m}$) modulo admissible isotopy.
3.2. Theorem. Let $\left(M, \frac{m}{=}\right)$ be a simple 3-manifold with complete and useful boundary-pattern. Then $\mathrm{H}(\mathrm{M}, \underline{m})$ is a finite group.

Proof. The proof is based on the following two finiteness theorems:

1. in a simple 3-manifold there are, up to admissible isotopy, only finitely many essential surfaces of a given admissible homeomorphism type. This follows from [Ha 1$]$.
2. the theorem is true for Stallings fibrations which are simple 3-manifolds. This follows from [He l].

As a first consequence of these two facts, we show that the mapping class group of all simple Stallings manifolds is finite. Here a Stallings manifold means a 3 -manifold ($M, \underline{\equiv}$) which contains an essential surface F such that $(M-U(F))^{-}$consists of I-bundles, where $U(F)$ denotes a regular neighbourhood of F in (M, \underline{m}). By 2. above, we may suppose that $(M-U(F))^{-}$consists of two twisted I-bundles, say $M_{1} M_{2} . M_{1}$ and M_{2} have product I-bundles $\tilde{\mathrm{M}}_{1}, \widetilde{\mathrm{M}}_{2}$, respectively, as 2 -sheeted coverings. Attaching the lids of $\tilde{\mathrm{M}}_{1}$ and \widetilde{M}_{2} in the obvious way, we obtain a manifold \widetilde{M} and a 2 -sheeted covering $p: \widetilde{M} \rightarrow M$. By 1. above, it suffices to show that the subgroup of $H(M, m)$ generated by all admissible homeomorphisms $h:(M, \underline{m}) \rightarrow(M, \underline{\underline{I}})$ with $h(F)=F$ is finite. Since $\underset{=}{ }$ is a finite set, we may restrict ourselves to the case that $\stackrel{m}{=}$ is the set of all boundary components of $M . h \mid M_{i}$ is an admissible homeomorphism of M_{i}, and so, by 3.1 ., it can be lifted to an admissible homeomorphism \tilde{h}_{i} of \tilde{M}_{i}. The two liftings \tilde{h}_{1} and \tilde{h}_{2} define a lifting $h: \tilde{M} \rightarrow \tilde{M}$. By construction \tilde{M} is a Stallings fibration, and, by the annulusand torus theorem (see [Wa 4], [CF 1], [Fe 1], [JS 1], [Jo 2]), it is a simple 3-manifold. Hence, by 2. above, there are only finitely many homeomorphisms
$\tilde{\mathrm{h}}: \tilde{\mathrm{M}} \rightarrow \tilde{\mathrm{M}}$, up to isotopy. Hence it remains to prove that $\tilde{\mathrm{h}}$ is isotopic to the identity if and only if h is. This in turn follows from (7) of [Zi 1]. Indeed, all suppositions of (7) of [Zi 1] are satisfied: a homeomorphism of \tilde{M} is isotopic to the identity if and only if it is homotopic to the identity [Wa 3]. Moreover, the centralizer of $p_{*} \pi_{1} \tilde{M}$ is trivial in $\pi_{1} M$. For otherwise $\pi_{1} \widetilde{M}$ has non-trivial centre since $\pi_{1} M$ is torsion-free [Wh 1] [Ep 1] and since $p_{*} \pi_{1} \widetilde{M}$ has finite index in $\pi_{1} M$. Then, by [Wa 2], \tilde{M} has to be a Seifert fibre space, and so also M (see [Jo 2]). But this is a contradiction to the fact that M is a simple 3 -manifold.

Now we come to the proof of the general case. It is by an induction on a great hierarchy. A great hierarchy is inductively defined as follows:

First denote $\left(M_{1},{\underset{m}{1}}_{=}^{\prime}\right)=(M, \underline{m})$. Then ${\underset{\sim}{m}}_{1}$ is a complete and useful boundary-pattern of M_{1}.

In $\left(M_{2 i+1}, m_{2 i+1}\right), i \geq 0$, we take the characteristic submanifold $V_{2 i+1}$ and we define $M_{2 i+1}=\left(M_{2 i+1}-V_{2 i+1}\right)^{-} .{\underset{=}{2 i+1}}$ and the components of $\left(\partial V_{2 i+1}-\partial M_{2 i+1}\right)^{-}$induce a boundary-pattern ${\underset{m}{=} 2 i+2}$ of $M_{2 i+2}$. Then $m_{2 i+2}$ is a complete and useful boundary-pattern if $\mathrm{m}_{2 i+1}$ is.

In $\left(M_{2 i}, m_{2 i}\right) \quad i \geq 1$, we pick some essential surface, $F_{2 i}$, $F_{2 i} \cap \partial M_{2 i}=\partial F_{2 i}$, which is not admissibly parallel to some side of $\left(M_{2 i}, m_{2 i}\right)$. Such a surface always exists, if $M_{2 i}$ is not a ball (see [Wa 2] and [Jo 2]). Define $M_{2 i+1}=\left(M_{2 i}-U\left(F_{2 i}\right)\right)^{-} . m_{2 i}$ and the components of $\left(\partial U\left(F_{2 i}\right)-\partial M_{2 i}\right)^{-}$ induce a boundary-pattern ${\underset{=}{2}}_{2 i+1}$ of $M_{2 i+1}$. Then again ${\underset{=}{m}}_{2 i+1}$ is a complete and useful boundary-pattern if ${\underset{\mathrm{m}}{2}}^{\mathrm{i}}$ is.

By a result of Haken [Ha 2], there is an integer $n \geq 1$ such that. (M_{n}, m_{n}) consists of balls with complete and useful boundary-patterns.

If $j \geq 1$ is an even integer, denote by $H\left(M_{j}, \bar{m}_{j}, F_{j}\right)$ the subgroup of $H\left(M_{j}, m_{j}\right)$ generated by all the admissible homeomorphisms of (M_{j}, m_{j}) which preserve $U\left(F_{j}\right)$. Of course, $H\left(M_{n}, m_{n}\right)$ is a finite group, and so, by the facts quoted in the beginning of the proof, it suffices to prove the following:
3.3. Lemma. If $\mathrm{H}\left(\mathrm{M}_{2 \mathrm{i}+2}, \mathrm{~m}_{2 \mathrm{i}+2}\right)$ is finite, and if $\mathrm{M}_{2 \mathrm{i}}$ is not a Stallings manifold, then $H\left(M_{2 i}, \underline{m}_{2 i}, \mathrm{~F}_{2 i}\right)$ is finite.

To begin with we simplify the notations somewhat, and we write $\left(N_{0}, n_{0}\right)=\left(M_{2 i}, \underline{m}_{2 i}\right),\left(N_{1}, \underline{n}_{1}\right)=\left(M_{2 i+1}, \underline{m}_{2 i+1}\right)$, and $\left(N_{2}, \underline{n}_{2}\right)=\left(M_{2 i+2}, \frac{m}{=} 2 i+2\right)$.

Moreover, denote $F=F_{2 i}$ and $H=\left(\partial U(F)-\partial N_{0}\right)^{-} . \quad{ }_{=0}$ together with the components of H, induces a boundary-pattern of the regular neighbourhood $U(F)$ which makes $U(F)$ into a product I-bundle.

By 1.3., the characteristic submanifold of a 3 -manifold is unique, up to admissible ambient isotopy. This means that every admissible homeomorphism of $\left(N_{1}, n_{1}\right)$ can be admissibly isotoped so that it preserves the characteristic submanifold V_{1} of $\left(N_{1}, n_{1}\right)$. This, together with the suppositions of Lemma 3.3., implies the following: there are finitely many admissible homeomorphisms g_{1}, \ldots, g_{m} of $\left(N_{0}, n_{0}\right)$ with $g_{j}(U(F))=U(F)$, for all $1 \leq j \leq m$, such that for a given admissible homeomorphism $g, g \in H\left(N_{0}, \underline{n}_{0}, F\right), g \mid N_{1}$ can be admissibly isotoped in $\left(N_{1}, n_{1}\right)$ so that afterwards

$$
g\left|\left(N_{1}-V_{1}\right)^{-}=g_{j}\right|\left(N_{1}-V_{1}\right)^{-}, \quad \text { for some } \quad 1 \leq j \leq m
$$

We claim that even g is admissibly isotopic to g_{j}. Since g is arbitrarily given, this would prove 3.3.

Define $h=g_{j}^{-1} g$. Then $h(N)=N$ and $h \mid(N-V)^{-}=i d$. It remains to show that h is admissibly isotopic to the identity. By the following assertion, it suffices to prove that the restriction $h \mid H$ can be admissibly isotoped in H into the identity.
3.4. Assertion. Suppose that $\mathrm{h} H$ is admissibly isotopic in H to the identity. Then h is admissibly isotopic in $\left(\mathrm{N}_{0}, \mathrm{n}_{0}\right)$ to the identity.

Since (F, f) is not an annulus or torus, it is easily seen that there is an admissible isotopy $\phi_{t}, t \in I$, of $h \mid H$ with $\phi_{t}(H)=H$ and $\phi_{t}\left(V_{1} \cap H\right)=V_{1} \cap H$, for all $t \in I$, and $\phi_{1}=i d \|$ (apply the theorems of Nielsen and Baer).

Removing all the components from V_{1} which are regular neighbourhoods of some side of $\left(N_{1}, \underline{n}_{1}\right)$ we obtain an essential F-manifold $V_{1}^{\prime} .\left(N_{0}, \underline{n}_{0}\right)$ is a simple 3-manifold. Hence every component of V_{l}^{\prime} and every component of $\left(N_{1}-V_{1}^{\prime}\right)^{-}$has to meet $U(F)$. More precisely, we have a partition of N_{0} consisting of the following parts:

1. the regular neighbourhood of $F, U(F)$,
2. components of $\left(N_{1}-V_{1}^{\prime}\right)^{-}$which are not I-bundles over the square or annulus,
3. I-bundles of V_{1}^{\prime} which meet $U(F)$ in lids, but which are not I-bundles over the square or annulus,
4. I-bundles over discs which do not meet $U(F)$ in lids, and Seifert fibre spaces over discs with at most one exceptional fibre (i.e. solid tori).

By 1.4., the parts described in 2. meet H in an essential surface whose components are different from inner squares or annuli.
h is an admissible homeomorphism which preserves this partition, and, of course, ϕ_{t} can be extended to an admissible isotopy $h_{t}, t \in I$, of h which preserves the partition and which is constant outside a regular neighbourhood of H. In fact, h_{t} may be chosen such that, in addition, h_{1} is the identity on $U(F)$ and on all parts of the partition described in 2. To see this note first that $U(F)$ is a product I-bundle and that the regular neighbourhood of H intersects every part of the partition in a system of product I-bundles. Then recall that $h \mid\left(N_{1}-V_{1}\right)^{-}$is the identity, and observe that every admissible homeomorphism of an I-bundle which is the identity on the lids can be admissibly isotoped into the identity (see proof of 3.5. in [Wa 3]), and this isotopy may be chosen to be constant on the lids provided the base of the I-bundle is not an annulus. Moreover, this isotopy may be chosen to be constant on all the sides of the I-bundle on which the homeomorphism is already the identity. Hence, since every part of the partition meets $U(F)$, this implies that h_{t} may be chosen so that, in addition, h_{l} is the identity on all the parts as described in 3. Therefore we may suppose that h_{l} is the identity on all parts except those described in 4.

So, let X be a submanifold of the partition as described in 4 . Let A be the union of all the sides of X which are contained in parts of the partition different from X. Then it follows from the properties of X that A is connected, for otherwise we find an essential square or annulus in X which does not meet $U(F)$, which is impossible since $\left(N_{0}, n_{0}\right)$ is simple. Hence, by the properties of X, every admissible homeomorphism of X which is the identity on A can be admissibly isotoped to the identity, using an isotopy which is constant on A. By the suppositions on the isotopy $h_{t}, t \in I$, this implies the assertion.

In order to prove the supposition of 3.4 ., i.e. that $h \mid H$ is admissibly isotopic in H to the identity, we introduce the concept of "good submanifolds"

An essential F-manifold W in $\left(\mathrm{N}_{1}, \mathrm{n}_{1}\right)$ is called a good submanifold, if
(i) W meets H in an essential surface G with the property: no component of $(H-G)^{-}$is an inner square or annulus in H which meets a component of G which is also an inner square or annulus,
(ii) there is an admissible isotopy of h which preserves $U(F)$ and which moves h so that afterwards $h(W)=W$ and $h\left|(H-G)^{-}=i d\right|(H-G)^{-}$.

In the remainder of the proof the property (i) of an essential surface in H will be called the square- and annulus-property.
3.5. Assertion. There is at least one good submanifold in ($\mathrm{N}_{1}, \underline{\underline{n}}_{1}$).

We obtain a good submanifold by modifying the characteristic submanifold V_{1} of $\left(N_{1}, n_{1}\right)$. Indeed, by what we have seen so far, V_{1} satisfies (ii), and $V_{1} \cap H$ is an essential surface in H. Suppose that there is a component A of ($\left.\mathrm{H}-\mathrm{V}_{1}\right)^{-}$which is an inner square (resp. annulus) in H and which meets a component B of $V_{1} \cap H$ which itself is also an inner square (resp. annulus) in H. Let $U(B)$ be a regular neighbourhood of B in $\left(N_{1}, \underline{\underline{n}}_{1}\right)$, and define $V_{1}^{\prime}=\left(V_{1}-U(B)\right)^{-}$. Then V_{1}^{\prime} satisfies (ii), for V_{1} satisfies (ii) and since $h \mid B \cup A$ is isotopic to the identity, by an isotopy in $B \cup A$ which is constant on $\partial B-A$. Thus, after finitely many steps, we obtain an admissible F-manifold with (i) and (ii). Removing trivial components from this F-manifold, we finally get a good submanifold. This completes the proof of 3.5 .

To continue the proof, let W be any good submanifold in $\left(N_{1}, \Pi_{1}\right)$. A moment's reflection shows that we may suppose that W is chosen so that, for every good submanifold W^{\prime} with $W^{\prime} \subset W$, the essential surface $W \cap H$ can be admissibly isotoped in H into $W^{\prime} \cap H$.
3.6. Assertion. W^{\prime} can be admissibly isotoped in $\left(N_{1}, n_{1}\right)$ so that afterwards

$$
W \cap H=d(W \cap H),
$$

where $\mathrm{d}: \mathrm{H} \rightarrow \mathrm{H}$ is the involution given by the reflections in the fibres of the product I-bundle U(F).

Define $G=W \cap H$, and suppose that G is in a very good position to dG. Of course, this position can always be obtained, using an admissible isotopic deformation of W in $\left(N_{1}, \underline{n}_{1}\right)$. Denote by G the essential intersection of G and $d G$, i.e. the largest essential surface contained in $G \cap d G$. Then, of course, $\left(H-G^{\prime}\right)^{-}$is the essential union of ($\left.H-G\right)^{-}$ and $(H-d G)^{-}$.
$U(F)$ is a product I-bundle. Setting $X=U(F)$ and $h=h \mid U(F)$, we see that we may apply 2.3. Hence it follows the existence of an admissible isotopy ϕ_{t}, $t \in I$, of $h \mid H$, with $\phi_{t}(H)=H$ and $\phi_{t}(G)=G$, for all $t \in I$, such that $\phi_{1}\left(H-G^{\prime}\right)^{-}=i d\left(H-G^{\prime}\right)^{-}$.

Let G_{1} be a component of G. It is easily checked that for 3.6. it suffices to show that G_{1} can be admissibly contracted in H to a component of G^{\prime} contained in G_{1} (recall that W has property (i)).

Case $1 \quad G_{I}$ is an inner square or annulus in H.
It follows from the existence of the isotopy ϕ_{t} that G_{1} contains at least one component G_{1}^{\prime} of the essential intersection G^{\prime}. For otherwise, removing trivial components from $\left(W-U\left(G_{1}\right)\right)^{-}$(if necessary) we obtain a good submanifold W^{\prime} such that G cannot be admissibly isotoped into $W \cap H$ (recall that G has the square- and annulus-property), where $U\left(G_{I}\right)$ is a regular neighbourhood of G_{1} in $\left(N_{1}, n_{1}\right)$. This, however, contradicts our choice of W. Since G_{1}^{\prime} is an essential surface, it is an inner square or annulus in H. Thus, of course, G_{1} can be admissibly contracted in H to G_{1}^{\prime}.

Case $2 \mathrm{G}_{1}$ is not an inner square or annulus in H.

Recall that G_{1} is a component of $H \cap W$. Let X be the component of W which contains G_{1}. Since we are in Case 2 and since W is an essential F-manifold, it follows that X is an I-bundle and that G_{1} is one lid of X.

Let $p: X \rightarrow B$ be the projection, and let $G_{1}^{+}=\left(\partial X-p^{-1} \partial B\right)^{-}$. Then G_{1} is a component of G_{1}^{+}. Denote by $e: G_{1}^{+} \rightarrow G_{1}^{+}$the involution given by the reflections in the I-fibres of X. As boundary-pattern of G_{l}^{+}, we fix the boundary-pattern induced by n_{0}, together with the set of components of $\left(\partial \mathrm{G}_{1}^{+}-\partial \mathrm{H}\right)^{-}$. Then e is an admissible involution of G_{1}^{+}.

Define $G_{1}^{\prime \prime}=G^{\prime} \cap G_{1}^{+}$. Since G^{\prime} is the essential intersection of G and $d G, G_{l}^{\prime \prime}$ is an essential surface in H. Since G is in a very good position to $d G$, it follows that $G_{1}^{\prime \prime}$ is even an essential surface in G_{1}^{+}.

Moreover, we may suppose that W is admissibly isotoped so that $G_{1}^{\prime \prime}$ is in a very good position with respect to $e\left(G_{1}^{\prime \prime}\right)$.

Since W is a good submanifold, we may suppose that h is admissibly isotoped so that $h(W)=W$ and $h \mid(H-W)^{-}=i d$. In particular, $h \mid X$ is an admissible homeomorphism of X. Setting $h=h \mid X$ and $G=G_{1}^{\prime}$, we claim that 2.3. may be applied. For this it remains to show that $h \mid X$ can be admissibly isotoped in X so that afterwards $h \mid\left(G_{1}^{+}-G_{1}^{\prime \prime}\right)^{-}=$id. But this follows immediately from the existence of the admissible isotopy ϕ_{t} of $h \mid H$ defined in the beginning of 3.6 .

Now, by .3., $h \mid X$ can be admissibly isotoped in X so that afterwards $h p^{-1} p R=i d$, where R is the essential union of $\left(G_{1}^{+}-G_{1}^{\prime \prime}\right)$ and $\left(G_{1}^{+}-\mathrm{eG}_{1}^{\prime \prime}\right)^{-}$. In general, however, this isotopy cannot be chosen to be constant on $\left(\partial X-\partial N_{1}\right)^{-}$. Therefore we also fix a regular neighbourhood U of $\left(\partial X-\partial N_{1}\right)^{-}$in X, and we define

$$
W^{\prime}=(W-X) \cup p^{-1} p R \cup U .
$$

Then it is easily checked that W^{\prime} is an essential F-manifold in (N_{1}, \underline{n}_{1}) with property (ii). Without loss of generality, W^{\prime} also has property (i), i.e. W^{\prime} is a good submanifold. For, if this is not the case, we simply have to add the components of $\left(X-W^{\prime}\right)^{-}$to W^{\prime} which are I-bundles over the square or annulus (recall that W has property (i)).

By our choice of W, the essential surface $H \cap W$ can be admissibly isotoped in H into $W^{\prime} \cap H$. In particular, $H \cap X$ can be admissibly isotoped into $H \cap p^{-1} p R$. By definition of R, this implies that G_{1} can be admissibly contracted to some component of $G_{1} \cap G^{\prime}$.

This completes the proof of 3.6 .

Since, by 3.6., we may suppose that $W \cap H=d(W \cap H)$, there is a system Z of I-bundles in $U(F)$ with $Z \cap H=W \cap H$. The submanifold

$$
W^{+}=W \cup Z
$$

consists of essential I-bundles, Seifert fibre spaces, and Stallings manifolds in ($\mathrm{N}_{0}, \mathrm{n}_{0}$).

Since $N_{0}=M_{2 i}$ is a simple 3 -manifold, the characteristic submanifold V_{0} of $\left(N_{0}, \underline{n}_{0}\right)$ is trivial. Hence also W^{+}is trivial, i.e. W^{+}is contained in a regular neighbourhood of some sides of $\left(N_{0}, n_{0}\right)$ (note that, by the suppositions of $3.3 ., N_{0}$ is not a Stallings manifold and that, by 1. of 1.2., $\left(\partial W^{+}-\partial N_{0}\right)^{-}$can be admissibly isotoped into $\left.V_{0}\right)$. In particular $H \cap W$ is contained in a regular neighbourhood of some sides of H. Hence it follows from property (ii) of W, that $h \mid H$ can be admissibly isotoped in H into the identity. This completes the proof of 3.3. q.e.d.

References

[CF 1] Cannon, J.W. - Feustel, C.D. : Essential embeddings of annuli and Möbius bands in 3-manifolds. Trans. A.M.S. 215 (1976), 219-239
[Fe 1] Feustel, C.D. : The torus theorem and its applications. Trans. A.M.S. 217 (1976), 1-43
[Ha 1] Haken, W. : Theorie der Normalflächen, ein Isotopiekriterium für den Kreisknoten. Acta math. 105 (1961), 245-375
[Ha 2] Haken, W. : Uber das Homöomorphieproblem der 3-Mannigfaltigkeiten I. Math. Z. 80 (1962), 89-120
[He l] Hemion, G. : On the classification of homeomorphisms of 2-manifolds and the classification of 3 -manifolds, preprint
[Hp 1] Hempel, J. : 3-manifolds. Ann. of Math. Study 86, Princeton University Press, Princeton, New Jersey (1976)
[Jo 1] Johannson, K. : Equivalences d'homotopie des variétés de dimension 3. C.R. Acad. Sci., Paris 281, Serie A (1975), 1009-1010
[Jo 2] Johannson, K. : Homotopy equivalences of 3-manifolds with boundaries. Springer lecture notes, to appear
[JS 1] Jaco, W.H. - Shalen, P.B. : Seifert fibered spaces in 3-manifolds, preprint
[Li 1] Lickorish, W.B.R. : A representation of orientable combinatorial 3-manifolds. Ann. of Math. 76 (3) (1962), 531-540
[Li 2] Lickorish, W.B.R. : Homeomorphisms of non-orientable two-manifolds. Proc. Camb. Phil. Soc. 59 (1963), 307-317
[Pa 1] Papakyriakopoulos, C.D. : On Dehn's lemma and the asphericity of knots. Ann. of Math. 66 (1957), 1-26
[Schu 1] Schubert, H. : Knoten und Vollringe. Acta math. 80 (1953), 131-286
[Sei I] Seifert, H. : Topologie dreidimensionaler gefaserter Räume. Acta math. 60 (1933), 147-238
[Swa 1] Swarup, G.A. : On a theorem of Johannson, preprint
[Wa 1] Waldhausen, F. : Eine Klasse von 3-Mannigfaltigkeiten, I, II. Inventiones math. 3 (1967), 308-333, 4 (1967), 88-117
[Wa 2] Waldhausen, F. : Gruppen mit Zentrum und 3-dimensionale Mannigfaltig keiten. Topologie 6 (1967), 505-517
[Wa 3] Waldhausen, F. : On irreducible 3-manifolds which are sufficiently large. Ann. of Math. 87 (1968), 56-88
[Wa 4] Waldhausen, F. : On the determination of some bounded 3-manifolds by their fundamental group alone. Proc. Int. Symp. Topology, Herceg Novi, Yugoslavia; Beograd (1969), 331-332
[Wh 1] Whitehead, J.H.C. : On 2 -spheres in 3 -manifolds. B.A.M.S. 64 (1958), 161-166
[Zi 1] Zieschang, H. : Lifting and projecting homeomorphisms. Archiv. d. Math. 14 (1973), 416-421.

