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Let M denote an orientable and compact 3-manifold which is irreducible, 

boundary-irreducible and sufficiently large (notations as in [Wa 3]). Then M wi 

be called simple if (in the notations of [Wa 3]) every incompressible annulus or 

torus in M is boundary-parallel. 

The object of this paper is to prove (see 3.2.): 

Theorem. If M is a simple 3-manifold, then the mapping class group 

of M is finite. 

It is known that every homotopy equivalence f : M 1 + H 2 between simple 

3-manifolds can be deformed into a homeomorphism (see [Jo i], [Jo 2], or [Swa i]). 

Moreover, every isomorphism ~ : ~l M1 + ~I M2 is induced by a homotopy 

equivalence. Hence we have the following 

Corollary. If M is a simple 3-manifold, then the outer automorphism group 

of ~i M is a finite group. 

To give a concrete example, let K be any non-trivial knot in S 3 without 

companions (in the sense of [Schu 1]). Then the outer automorphism group of the 

knot group of K is a finite group, and the knot space of K admits only 

finitely many homeomorphisms, up to isotopy. 

In order to prove the theorem, we shall use the concept of characteristic 

submanifolds as developed in [Jo 2], together with certain finiteness theorems 

of Haken and Hemion. 

§ 1 Notations and preliminaries 

Throughout this paper we work in the PL-category, and entirely in the 

framework of "manifolds with boundary-patterns" and "admissible maps" as used in 

[Jo 2]. For convenience we here repeat the necessary definitions. 

Let M be a compact n-manifold, n < 3 . A boundary-pattern for M 

consists of a set ~ of compact, connected (n-l)-manifolds in ~H , such that 

the intersection of any i, i = 2,3,4, of them consists of (n-i)-manifolds. 
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The elements of m are called the faces of (M,~), and the completed 
= 

boundary-pattern of (M,~) is defined to be the set m u { components of 

( ~M - Gem G)- }. A boundary-pattern is complete if it is equal to its 
= 

completed boundary-pattern. 

An admissible map f : (N,~) + (M,m) is a map f : N ÷ M satisfying 

= UGcm components of f-IG (0 = disjoint union). 
= 

An admissible homotopy is a continuous family of admissible maps. Having 

defined "admissible homotopy" one also has defined "admissible isotopy". 

An i-faced disc, i ~ l, denotes a 2-disc with complete boundary-pattern 

and i faces. 

A boundary-pattern m of M is useful if every admissible map 
= 

f : (D,d) ÷ (M,m) can be admissibly deformed near a point, where (D, 4) is 

an i-faced disc, 1 ~ i ~ 3. It is a theorem [Jo 2] that this is equivalent 

to the statement that the boundary of every admissibly embedded i-faced disc, 

1 ~ i ~ 3, bounds a disc in ~M such that D n UGc m ~G is the cone on 
= 

~D n U ~G. 
Gem 

= 

An admissible curve f : (k, ~k) + (~4,~), where k = I or S I, is called 

essential, if it cannot be admissibly deformed near a point. An admissible 

map f : (N,~) + (M,~) is called essential, if it maps essential curves to 

essential curves. 

A 3-manifold will mean an orientable 3-manifold (not necessarily connected) 

2-manifolds (surfaces) are not generally required to be orientable or connected 

Whenever the notation of an annulus or ~6bius band appears, it is to be 

understood that the boundary-pattern is the collection of its boundary-curves. 

A square is a 4-faced disc. An inner square or annulus in a surface 

(F,~) is an essential surface (A,~) in (F,~) such that (A,~), together 

with its completed boundary-pattern, is a square or annulus. 

A 3-manifold (M,~) will be called I-bundle or Seifert fibre space if 

M admits such a structure (see [Sei i] [Wa i]), with fibre projection 

p : M ÷ F, in such a way that the sides of (M,m) are either components of 

( ~M - p-l~F)- or consist entirely of fibres. 
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The following suhmanifolds will play a crucial role throughout this paper. 

1.1. Definition. Let (M,m] be a 3-manifold. An essential F-manifold, 

w in (M,m) is an embedded 3-manifold such that 

i. m induces a boundary-pattern of W such that every component 

of W is either an I-bundle or a Seifert fibre space. 

2. ( ~W - ~M)- is essential in (M,m). 

1.2. Definition. An essential F-manifold, V, in (M,~) is called a 

characteristic submanifold if the following holds: 

I. if W is any essential F-manifold in (M,m), then W can be 

admissibly isotoped into V, and 

2. if W' is any union of components of (M-V)-, then V u W' 

is not an essential F-manifold. 

The following facts about characteristic submanifolds will be used in 

this paper without proof. They are shown in [Jo 2]. 

1.3. Theorem. Let (M,m) be an irreducible, sufficiently large 

3-manifold with useful and complete boundary-pattern. Then the 

characteristic submanifold in (M,m] exists and is unique, up to 

admissible ambient isotopy. 

1.4. Theorem. Let (M,m) be given as in 1.3. and let V be the 

characteristic submanifold in (M,m). Let M' = (M-V)- 

and let m' = {G I G is component either of M' n V, or of = 

G n H, where H 6 m ). 

Then for every essential square, annulus, or torus, T, in (M',m') 

either I. or 2. holds 

I. T N V ~ ~ and the component of (M',m') which contains 

T is admissibly homeomorphic to T × I. 

2. T n W = @. and T is admissibly parallel in (M',~') 

to a side of (M',m') which is contained in ( ~V - 8M)- 
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2 Homeomorphisms of I-bundles 

In order to prove the theorem given in the introduction, we need a certain 

technical result on homeomorphisms of I-bundles. This will be established in 

2.3. 

Let G l and G 2 be two essential surfaces in (F,~) such that 

( ~G 1 - ~F)- and ( ~G 2 - ~F)- are transversal. Then we say that G 2 is in 

a very good position with respect to G l , provided the number of points of 

( ~G 2 - ~F)- n ( ~G 2 - ~F)- cannot be diminished and the number of components 

of ( ~G 2 - ~F)- contained in G l cannot be enlarged, using an admissible 

isotopy of G 2 . 

Now, for the following, let (X,x) denote an I-bundle (twisted or not) 

with complete boundary-pattern, and with projection p : X ÷ B . Let F be 

the union of the lids of (X,~), i.e. F = ( ~X - p-l~B)-, and let ~ be 

the boundary-pattern of F induced by ~ . Finally, denote by 

d : (F,~) ÷ (F,f) the admissible involution given by the reflections in the 

I-fibres in X . 

2.1. Lemma. Let G be an essential surface in (F,f). Suppose that 

G is in a very good position with respect to dG . Let 

h : (X,~) ÷ (X,~) be an admissible homeomorphism with 

hi(F-G )- = idl(F-G)- . Then there is an admissible isotopy h t, 

t • I, of h = h 0 , with ht(G ) = G , for all t • I , such that 

h l l  ( ~d G - ~ F ) -  = i d l (  ~d  G - ~ F ) -  and h l I ( F - G ) -  = i d l ( F - G ) -  • 

Proof. Denote by kl,...,kn, n z i, all the components of ( aG - ~F) 

Suppose that h I d k I u ... u d kj = id, for some j z i, and consider 

k = kj+ I. It remains to show the existence of an admissible isotopy h t, 

t • I, of h = h 0 , with ht(G) = G, for all t ~ I, such that 

h 1 I d  k 1 u . . .  u d k .  u d k = i d  and  h ] I ( F - G ) -  = i d [ ( F - G ) -  
3 

k is an essential curve (closed or :lot) in (F,~) since G is an 

essential surface in (F,f). The preimage p-l(p k) is, in general, not a 

square or annulus, for k n dk need not be empty. But it is easy to see 

that there is always an I-fibre preserving immersion gk: k x I ÷ X with 

gk(k x I) = p-lp k, and gk(k x O) = k and gk(k x i) = dk. 
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Def ine  1 = h - l ( d k ) .  Observe  t h a t  h - l l k  = i d l k  , f o r  h i ( F - G  ) -  =idl(F-G)-, 
and t h a t  t he  immers ion  gk and the  h o m e o m o r p h i s m  h a re  b o t h  e s s e n t i a l  maps. 

Hence h - l g k  i s  an e s s e n t i a l  s i n g u l a r  s q u a r e  o r  a n n u l u s  in  (X,~) w i th  k as  

one s i d e .  This  i m p l i e s  t h a t  h - l g k  can be a d m i s s i b l y  deformed ( r e l  k x O) 

in  (X,~) i n t o  a v e r t i c a l  map, i . e .  i n t o  gk" To see  t h i s  o b s e r v e  t h a t  

p • h - l g k  can be a d m i s s i b l y  c o n t r a c t e d  ( r e l  k x O) in  t h e  base  B i n t o  
-1 ph gk (k x 0 ) ,  and l i f t  such a c o n t r a c t i o n  to  an a d m i s s i b l e  homotopy o f  

h - l g  k. The r e s t r i c t i o n  o f  t h i s  homotopy to  (k x 1) x I d e f i n e s  an a d m i s s i b l e  

d e f o r m a t i o n  f : k × I + F w i t h  f ] k  x 0 = i d ] l  and flk × 1 = i d ] d k .  

Case 1 dk n (~G - ~F) is empty. 

In this case d k does not meet U dk. or (~G - ~F) . The same 
l~i~j i 

holds for 1 : that 1 does not meet U dk. follows from 
l~i~j l 

hl Ul~i~j dki = id, h(1) = dk, and Ul~i~j dki = ~ ' and that 1 does not 

meet (~G - ~F)- follows from hi(F-G ) - = id. Hence, since G is in a very 

good position with respect to dG, it follows that f can be admissibly 

deformed (rel k x ~I) so that afterwards S = f-l((SG - 3F)- u U l~i~j dki) 

is a system of pairwise disjoint curves which are admissibly parallel to the 

side k x 0 of k x I (transversality lemma; see [Wa 2]). 

If S is empty and dk lies in (F-G) , there is nothing to show since 

hi(F-G ) - = idI(F-G)-. If S is empty and dk lies in G, the existence of 

the required isotopy ht, t c I, follows from Baer's theorem (see §i of 

[Wa 3]). 

Thus we may suppose that S is non-empty. Then S splits k x I into 

a non-trivial system of squares or annuli. Let A' be that one of them which 

contains k × I. As usual, using the theorem of Nielsen (see §I of [Wa 3]), 

the existence of the map fIA' implies the existence of an inner square or 

annulus A in (F,~) with (~A - ~F)- = t u dk, where t is either dki, 

for some 1 ~ i ~ j, or a component of (~G - ~F) . Moreover, it follows 

from our choice of A' that A ° n ((~G - 3F)- u Ul~i~ j dki) = ~ . Consider 

h-IA, and note that h-lt = t, for hl U l~i~j dk.1 = id and hi(F-G ) - = id. 

Hence h-IA is also an inner square or annulus in (F,f) with (h-IA) ° n 

((~G - ~F)- u Ul~i~j dki) = ~' and (~h-IA - 3F)- = h -I dk u h-lt = 1 u t. 

Now 1 is admissibly isotopic, via h-IA, to t and then, via A, to dk. 

Extending these isotopies in the obvious way, we get the required isotopy 

ht, t ¢ I, provided h does not interchange the components of (SU(t) - ~F) , 

where U(t) is some regular neighbourhood of t with h(U(t)) = U(t). 
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But the latter must be true, for otherwise h reverses the orientation of F 

which would imply that G = F since hi(F-G ) - = idl(F-G)-. 

Case 2 dk n (~G - ~F) is non-empty 

G is an essential surface in (F,~) which is in a very good position with 

respect to dG. Hence we may suppose that f is admissibly deformed 

(rel k x ~I) so that f-l(~G - ~F)- is a system of curves which join k x 0 

with k x I. 

We first consider the subcase that f-l( Ul~i~j dki) is empty. Let a 1 

be a component of (i - G) , and let F 1 be the component of (F-G) which 

contains a I . Then a I is an essential arc in FI, for G is in a very good 

position with respect to dG. flal x I is an admissible homotopy of a I in 

F1, and since hi(F-G)- = idl(F-G)- we have a I = f(a I x O) = f(a I x I). If 

flal x 1 cannot be admissibly deformed (rel a I x ~I) into al, then, by 

Nielsen's theorem, F 1 has to be an inner annulus in (F,~). Moreover, it 

follows that F 1 n Ul~i~ j dk i = @ since f-l( U l~i~J dki) = 9. Sliding a l 

around F 1 (if necessary), we may suppose that h is isotoped so that 

flal x I now has the preceding property, for all components a I of (dk - G)- 

In this situation, the existence of the homotopy f shows that every component 

b 2 of 1 n G can be admissibly deformed in G into a component a 2 of 

k n G, using a deformation which is constant on ~b 2 and which does not meet 

Ul~i~ j dk..1 In fact, by Baer's theorem, these deformations may be chosen as 

isotopies. Extending all these isotopies in the obvious way, we get the 

required isotopy ht, t E I. 

Now let us suppose that f cannot be admissibly deformed so that after- 

wards f-l( Ul~i~j dki) = @ and that f-l(~G - ~F)- consists of curves which 

join k x 0 with k x i. Then f can be admissibly deformed (tel k x ~I) 

so that f-l( U l~i~j dki) is a non-empty system of curves which are parallel 

to k x O. This system splits k x I into squares or annuli. Let A' be 

that one of them which contains k x I. Using this A' the existence of the 

required isotopy h t follows by a similar argument as in Case I. q.e.d. 

For the next lemma let G be again an essential surface in (F,_f), and 

suppose that G is in a very good position with respect to dG. Let U be 

a regular neighbourhood of (~G - ~F)- in (F,f). Denote by C the 

essential union of U and dU, i.e. the smallest essential surface in 

(F,_f) containing U u dU. 
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2.2 Lemma. Suppose that (X,x) is not the I-bundle over the annulus, 

torus, ~6bius band, or Klein bottle. Let h : (X,~) + (X,~) 

be an admissible homeomorphism with hi(F-G ) - = idl(F-G)-. 

Then there is an admissible isotopy ht, t e I, of h = ho, 

ht(G ) = G, for all t e I, such that hlIp-lpc = id and 

h l I ( F - G ) -  = i d .  

wi th 

Proof. By 2.1., we may suppose that hl(~G - ~F)- = id and hI(~dG - ~F)- =id. 

hlF is orientation preserving, for hi(F-G)- = id. Hence we may suppose that 

hlU = id and hid U = id, and hence also hlC = idlC . Observe that, by our 

choice of C, dC = C . 

Denote N = p-lpC, and let n be the boundary-pattern of N induced by 

x . Then the fibration of (X,~) induces an admissible fibration of (N,~) as 

a system of I-bundles. C is then the union of all the lids of these I-bundles. 

By its very definition, C is m essential surface in (F,f). Hence it 

follows that each component A of (~N - ~X) is an essential square or annulus 

in (X,x). Since hlF n ~A = idIF n ~A, we have that hlA , together with 

idIA, defines an admissible singular annulus or torus in (X,x). Applying 

Nielsen's theorem to the product of this map with p, we find that this 

singular annulus or torus has to be inessential in (X,~) (recall our 

suppositions on (X,~)). This in turn implies that hlA can be admissibly 

deformed (rel F n ~A) in (X,x) into A (we are in an I-bundle). By 5.5 

of [Wa 3], this deformation may be chosen as an isotopy, and this isotopy can 

be extended to an admissible isotopy of h, which is constant on F. Therefore 

it follows that h can be admissibly isotoped (tel F) so that afterwards, 

h(N) = N. 

Let  ( N I , ~ I )  be  any  componen t  o f  ( N , n ) ,  and  l e t  ~1 be  t h e  c o m p l e t e d  

b o u n d a r y - p a t t e r n  o f  ( N I ~ I ) .  Then h]N 1 : ( N I , ~ I )  + ( N I , ~ I )  i s  an  a d m i s s i b l e  

homeomorphism w i t h  h l F  n N 1 = i d l F  n N 1. I f  ( N I , ~ I )  i s  n o t  t h e  I - b u n d l e  

o v e r  t h e  a n n u l u s  o r  Mbbius  b a n d ,  i t  f o l l o w s ,  by an a r g u m e n t  o f  3 . 5 .  o f  [Wa 3 ] ,  

t h a t  h lN ] : ( N I , ~ I )  + ( N I , ~ I )  can  be a d m i s s i b l y  i s o t o p e d  i n t o  t h e  i d e n t i t y ,  

u s i n g  an i s o t o p y  w h i c h  i s  c o n s t a n t  on N t n F. T h i s  i s  a l s o  t r u e  i f  ( N I , ~ I )  

i s  t h e  I - b u n d l e  o v e r  t h e  M~bius b a n d .  To s e e  t h i s ,  n o t e  t h a t  i n  t h i s  c a s e  N 1 

i s  a r e g u l a r  n e i g h b o u r h o o d  o f  a v e r t i c a l  Mobius  b a n d .  M o r e o v e r ,  e v e r y  

homeomorph i sm o f  t h e  Mobius  band  wh i ch  i s  t h e  i d e n t i t y  on t h e  b o u n d a r y  i s  

isotopic (tel boundary) to the identity. 
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Let N be a union of components of 

we have seen so far, we may suppose that 

of I-bundles over the annulus. 

N such that biN = idIN. By what 

is chosen so that N - N consists 

So let N 1 be any component of N - N . Then (Nl, ~i) is an I-bundle 

over the annulus and we may suppose that hiN 1 : (NI,~I) ÷ (NI,~I) cannot be 

admissibly isotoped to the identity, using an isotopy which is constant on 

N 1 n F. It remains to show that there is an admissible isotopy ht, t ~ I, 

of h = h0, with ht(G) = G and ht(N ) = N, such that hiIN U N 1 = idiN u N 1 

and hlI(F-G )- = idi(F-G)-. 

For this consider N 1 as a regular neighbourhood of a vertical annulus A 1 

in (X,~). Without loss of generality, one boundary component of A I, say kl, 

is a component of (3G - 3F)- and the other one, say k2, is contained either 

in G or in (F-G)- without meeting (~G - aF)- (recall our choice of NI). 

If k 2 lies in G, observe that hiA 1 : A l ÷ A l is isotopic to the 

identity, using an isotopy which is constant on k I. Extending such an isotopy 

to an admissible isotopy of b which is constant outside a regular neighbourhood 

of NI, we find the required isotopy h t- 

If k 2 lies in (F-G)-, then ~A lies in (F-G)-. It follows that, for 

one component X 1 of (X - N) which meets NI, all lids are contained in 

(F-G)-. Let B be an essential vertical square in (XI,~I) which meets NI, 

where ~I is the boundary-pattern induced by x and ~I the completed 

boundary-pattern of (XI,~I). Since hi(F-G ) - = idi(F-G)-, we have that hi B, 

together with idiB , defines an admissible singular annulus in (XI,~I). 

By our suppositions on h]Nl, this singular annulus is essential in (XI,~I) 

and cannot be admissibly deformed into a vertical map. Hence, by Nielsen's 

theorem, (XI,~I) is the I-bundle over the annulus or M~bius band. But it 

cannot be the I-bundle over the MSbius band, for hix I : (Xl,~l) ÷ (Xl,~l) 

cannot be admissibly isotoped (tel F) into the identity since, by 

supposition, hlN 1 cannot. 

By what we have seen so far, (XI,~I) has to be the I-bundle over the 

annulus. Moreover, hlX l : (XI,~I) ÷ (XI,~I) cannot be admissibly isotoped 

into the identity, using an isotopy which is constant on X I n F. Thus, in 

particular, X 1 cannot meet N. So, either (aX I - 3X)- is connected or X 1 

meets a component N 2 of N which is also an I-bundle over the annulus. 

Again, consider N 2 as a regular neighbourhood of a vertical annulus A 2 in 

(X,~). Without loss of generality, one boundary component, say 1 I, of A 2 
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is a component of (~G - ZF)- and so the other one, say 12, is a component 

of (~d G - ZF)-. Since X l is an I-bundle over the annulus, it follows that 

k I and Ii, resp. k I and 12, bound an inner annulus in (F,[). Since G 

is in a very good position tO dG, it follows that k I and 11 bound an inner 

annulus, i.e. k I lies in a component G 1 of (F-G)- which is an inner 

annulus in (F,~). Let H be the lid of N 1 u X 1 u N 2 which contains k 2. 

Observe that biN l u X 1 u N 2 is admissibly isotopic in N 1 u X 1 u N 2 to the 

identity, using an isotopy which is constant on H. Extending this isotopy to 

an admissible isotopy of h which is constant outside of a regular neighbourhood 

of N 1 u X 1 u N 2 we find the required isotopy h t. q.e.d. 

Again let G be an essential surface in (F,~), and suppose that G is in 

a very good position with respect to dG. 

2.3. Proposition. Suppose that (X,~) is not the I-bundle over the annulus, 

Mobius band, torus, or Klein bottle. Let h : (X,~) ÷ (X,~) be an 

admissible homeomorphism with hI(F-G ~- = id. 

Then there is an admissible isotopy ht, t 6 I, of h = ho, 

ht(G ) = G, for all t E I, such that hlIp-lp H = idlp-lp H, 

where H is the essential union of (F-G) and (F - d G) . 

with 

Proof. Let U be the regular neighbourhood of (~G - ~F) in (F,f), and 

define C to be the essential union of U and dU. Then, by 2.2., we may 

suppose that hip-lpC = idlp-lpc and hi(F-G)- = idi(F-G)-. Let H' be the 

union of C with all the components of (F-C) which lie either in (F-G) 

or in (F - dG) . Then observe that H is contained in H'. 

Let X 1 be any component of (X - p-lp C)- with X 1 n F c H'. Then, by 

the definition of H', at least one lid of X lies in (F-G) . It suffices 
1 

X 1 ÷ X is admissibly isotopic to the identity, using an to show that hIX 1 
1 

isotopy which is constant on (~X 1 - ~X) and all the lids of X 1 which lie 

in (F-G) . By our suppositions on h, this follows by an argument of 3.5 

of [Wa 3] (recall our choice of X). q.e.d. 
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3 The proof of the theorem 

3.1. Lemma. Let (M,~) be a twisted I-bundle, (N,n) be a product 

I-bundle, and p = (N,~) + (M,m) be an admissible 2-sheeted covering. 

Then every admissible homeomorphism, h, of (M,~) can be lifted 

to an admissible homeomorphism, g, of (N,n) i.e. p • h = g • p. 

Proof. One first proves as in (5.5.) of [Wa 1] that every homeomorphism of 

(M,~) can be admissibly isotoped into a fibre preserving one. Hence 3.1. is 

proved if we show the statement of 3.1., for every non-orientable surface 

(F,~) and orientable 2-sheeted covering q : (G,g) ÷ (F,f). For this we may 

restrict ourselves to the case that f consists of all the boundary curves of F 
= 

Then we may identify each boundary component to a point. Hence we suppose that 

F is closed and that h is a homeomorphism which maps a set of points 

Xl,..., Xn, n a 0, to itself. Using [Li I] and [Li 2], it is not difficult 

to show (see [Jo 2] that h is isotopic (tel xi) to some product of the 

following homeomorphisms: 

i. f is a Y-homeomorphism (in the sense of [Li 2]) with g(xi) = xi, 

for all 1 s i s n. 

2. ~ii' 1 < i < j s n, is the rotation along a fixed simple closed, 2-sided 

curve, k, in F, with k n U x. = x. u x. , which interchanges x. 
l i ] i 

with x. and which is the identity outside of a regular neighbourhood 
] 

of k. 

3. Bi, 1 s i s n, is the end of an isotopy which moves the point x i once 

around a fixed simple closed, 1-sided curve, k, in F, with 

k n U x. = x., and which is constant outside of a regular neighbourhood 
1 1 

of k. 

4. g is a Dehn twist, i.e. a homeomorphism which is the identity outside a 

regular neighbourhood of a fixed simple closed, 2-sided curve, k, with 

k n U x. = ~ . 
1 

Observe that the preimage under g of every 1-sided, simple closed curve 

is connected since G is orientable. Using this fact, it is an easy exercise 

to show that all homeomorphisms of i. - 3. can be lifted. Now we claim that the 

preimage under q of every 2-sided, simple closed curve k, in F is dis- 

connected. To see this, fix a regular neighbourhood U(k) of k, and let 

U(p-lk) be the preimage of U(k) under p. The non-trivial covering 
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translation, d, maps U(p-lk) to itself. Moreover, it follows that the 

restriction d U(p-lk) is orientation-reserving since d is orientation- 

reversing. Hence, since d is a fixpoint free, d interchanges the boundary 

components of U(p-lk), if U(p-lk) is connected (i.e. an annulus). But this 

is impossible since k is 2-sided. Thus our claim follows, and so, of course, 

every Dehn twist of F can be lifted to G. q.e.d. 

An irreducible and sufficiently large 3-manifold (M,~) is called simple 

if every essential square, annulus, or torus in (M,m) is admissibly parallel 

to some side of (M,~). The mapping class group H(M,~) is defined to be the 

group of all admissible homeomorphisms of (M,m) modulo admissible isotopy. 

3.2. Theorem. Let (M,~) be a simple 3-manifold with complete and useful 

boundary-pattern. Then H(M,m) is a finite group. 

Proof. The proof is based on the following two finiteness theorems: 

i. in a simple 3-manifold there are, up to admissible isotopy, only 

finitely many essential surfaces of a given admissible homeomorphism 

type. This follows from [Ha I]. 

2. the theorem is true for Stallings fibrations which are simple 

3-manifolds. This fellows from [He i]. 

As a first consequence of these two facts, we show that the mapping class 

group of all simple Stallings manifolds is finite. Here a Stallings manifold 

means a 3-manifold (M,~) which contains an essential surface F such that 

(M - U(F))- consists of I-bundles, where U(F) denotes a regular neighbourhood 

of F in (M,~). By 2. above, we may suppose that (M - U(F))- consists of 

two twisted I-bundles, say M 1M 2 . M l and M 2 have product I-bundles 

MI' M2' respectively, as 2-sheeted coverings. Attaching the lids of M1 

and M2 in the obvious way, we obtain a manifold M and a 2-sheeted covering 

p : M ÷ M. By i. above, it suffices to show that the subgroup of H(M,m) 

generated by all admissible homeomorphisms h : (M,~) ÷ (M,m) with h(F) = F 

is finite. Since m is a finite set, we may restrict ourselves to the case 
= 

that ~ is the set of all boundary components of M. him i is an admissible 

homeomorphism of Mi, and so, by 3.1., it can be lifted to an admissible 

homeomorphism h. of M.. The two liftings hl and h2 define a lifting 
1 1 

h : M ÷ M. By construction M is a Stallings fibration, and, by the annulus- 

and torus theorem (see [Wa 4], [CF I], [Fe i], [JS I], [Jo 2]), it is a simple 

3-manifold. Hence, by 2. above, there are only finitely many homeomorphisms 
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h : M ÷ M, up to isotopy. Hence it remains to prove that h is isotopic to 

the identity if and only if h is. This in turn follows from (7) of [Zi i]. 

Indeed, all suppositions of (7) of [Zi 1] are satisfied: a homeomorphism of 

is isotopic to the identity if and only if it is homotopic to the identity 

[Wa 3]. Moreover, the centralizer of p,~iM is trivial in ~i M . For otherwise 

~IM has non-trivial centre since ~IM is torsion-free [Wh I] [Ep i] and since 

p,~iM has finite index in ~i M . Then, by [Wa 2], M has to be a Seifert fibre 

space, and so also M (see [Jo 2]). But this is a contradiction to the fact 

that M is a simple 3-manifold. 

Now we come to the proof of the general case. It is by an induction on a 

great hierarchy. A great hierarchy is inductively defined as follows: 

First denote (MI, ~l) = (M,~). Then ~I is a complete and useful 

boundary-pattern of M I. 

In (M2i+l, m2i+l), i 2 0, we take the characteristic submanifold V2i+l 

and we define M2i+l = (M2i+l - V2i+l) ~2i+l and the components of 

(3V2i+l 3M2i+l) induce a boundary-pattern ~2i+2 of M2i+2 . Then ~2i+2 

is a complete and useful boundary-pattern if m2i+l is. 

In (M2i, m2i ) i > I, we pick some essential surface, F2i, 

F2i n ~M2i = SF2i , which is not admissibly parallel to some side of (M2i, m2i). 

Such a surface always exists, if M2i is not a ball (see [Wa 2] and [Jo 2]). 

Define M2i+l (M2i - U(F2i))- ~2i and the components of (SU(F2i) - ~M2i)- 

induce a boundary-pattern ~2i+I of M2i+l. Then again ~2i+i is a complete 

and useful boundary-pattern if ~2i is. 

By a result of Haken [Ha 2], there is an integer n ~ 1 such that (Mn,~n) 

consists of balls with complete and useful boundary-patterns. 

If j ~ 1 is an even integer, denote by H(Mj,~j,Fj) the subgroup of 

H(Mj,mj) generated by all the admissible homeomorphisms of (Mj,~j) which 

preserve U(Fj). Of course, H(Mn,mn ) is a finite group, and so, by the 

facts quoted in the beginning of the proof, it suffices to prove the following: 

3.3. Lemma. If H(M2i+2,~2i+2 ) is finite, and if M21. is not a 

Stallings manifold, then H(M2i,m2i,F2i) is finite. 

To begin with we simplify the notations somewhat, and we write 

(No,~O) = (M2i,m2i), (NI,~I) = (M2i+l,m2i+l), and (N2,~2) = (M2i+2,m2i+2). 
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Moreover, denote 

components of H, 

U(F) which makes 

F = F2i and H = (~U(F) - ~N0) T0 together with the 

induces a boundary-pattern of the regular neighbourhood 

U(F) into a product I-bundle. 

By 1.3., the characteristic submanifold of a 3-manifold is unique, up to 

admissible ambient isotopy. This means that every admissible homeomorphism of 

(NI,~I) can be admissibly isotoped so that it preserves the characteristic 

submanifold V 1 of (Nl,~l) This, together with the suppositions of Lemma 3.3., 

implies the following: there are finitely many admissible homeomorphisms 

gl ..... gm of (N0,~O) with gj(U(F)) = U(F), for all 1 ~ j ~ m, such that 

for a given admissible homeomorphism g, g ¢ H(N0,~0,F), gin I can be 

admissibly isotoped in (NI,~I) so that afterwards 

g](N 1 - Vl)- = gj[(N 1 - VI)- , for some 1 ~ j ~ m . 

We claim that even g is admissibly isotopic to gj. Since 

given, this would prove 3.3. 

g is arbitrarily 

Define h = gilg . Then h(N ) = N and h[(N - V )- = id. It remains to 

show that h is admissibly isotopic to the identity. By the following assertion, 

it suffices to prove that the restriction hIH can be admissibly isotoped in H 

into the identity. 

3.4. Assertion. Suppose that h H is admissibly isotopic in H to the 

identity. Then h is admissibly isotopic in (N0,~0) to the 

identity. 

Since (F,f) is not an annulus or torus, it is easily seen that there is 

an admissible isotopy ~t' t ~ I, of hlH with ~t(H) = H and 

~t(Vl n H) = V l n H, for all t c I, and 41 = idlH (apply the theorems of 

Nielsen and Baer). 

Removing all the components from V 1 which are regular neighbourhoods of 

some side of (NI,~I) we obtain an essential F-manifold V~ . (No,To) is a 

simple 3-manifold. Hence every component of V~ and every component of 

(N 1 - V~)- has to meet U(F). More precisely, we have a partition of N o 

consisting of the following parts: 

I. the regular neighbourhood of F, U(F), 

2. components of (N 1 - VI)- which are not I-bundles over the square 

or annulus, 
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3. I I-bundles of V l which meet U(F) in lids, but which are not 

I - b u n d l e s  o v e r  t h e  s q u a r e  o r  a n n u l u s ,  

4. I-bundles over discs which do not meet U(F) in lids, and 

Seifert fibre spaces over discs with at most one exceptional 

fibre (i.e. solid tori). 

By 1.4., the parts described in 2. meet H in an essential surface whose 

components are different from inner squares or annuli. 

h is an admissible homeomorphism which preserves this partition, and, 

of course, ~t can be extended to an admissible isotopy ht, t c I, of h 

which preserves the partition and which is constant outside a regular 

neighbourhood of H. In fact, h t may be chosen such that, in addition, h l 

is the identity on U(F) and on all parts of the partition described in 2. 

To see this note first that U(F) is a product I-bundle and that the regular 

neighbourhood of H intersects every part of the partition in a system of 

product I-bundles. Then recall that hl(N 1 - VI)- is the identity, and observe 

that every admissible homeomorphism of an I-bundle which is the identity on the 

lids can be admissibly isotoped into the identity (see proof of 3.5. in [Wa 3]), 

and this isotopy may be chosen to be constant on the lids provided the base of 

the I-bundle is not an annulus. Moreover, this isotopy may be chosen to be 

constant on all the sides of the I-bundle on which the homeomorphism is already 

the identity. Hence, since every part of the partition meets U(F), this 

implies that h t may be chosen so that, in addition, h I is the identity on 

all the parts as described in 3. Therefore we may suppose that h I is the 

identity on all parts except those described in 4. 

So, let X be a submanifold of the partition as described in 4. Let A be 

the union of all the sides of × which are contained in parts of the partition 

different from X. Then it follows from the properties of X that A is 

connected, for otherwise we find an essential square or annulus in X which 

does not meet U(F), which is impossible since (N0,~0) is simple. Hence, 

by the properties of X, every admissible homeomorphism of X which is the 

identity on A can be admissibly isotoped to the identity, using an isotopy 

which is constant on A. By the suppositions on the isotopy ht, t E I, 

this implies the assertion. 

In order to prove the supposition of 3.4., i.e. that hlH is admissibly 

isotopic in H to the identity, we introduce the concept of "good submanifolds" 
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An essential F-manifold W in (Nl,nl) is called a good submanifold, if 

(i) W meets H in an essential surface G with the property: no 

component of (H-G)- is an inner square or annulus in H which 

meets a component of G which is also an inner square or annulus, 

(ii) there is an admissible isotopy of h which preserves U(F) and 

which moves h so that afterwards h(W) : W and 

h i ( H - G ) -  = i d l ( H - G ) -  . 

In the remainder of the proof the property (i) of an essential surface in H 

will be called the square- and annulus-property. 

3.5. Assertion. There is at least one good submanifold in (Nl,n]). 

We obtain a good submanifold by modifyin Z the characteristic submanifold 

V 1 of (NI,~I). Indeed, by what we have seen so far, Vl satisfies (ii), 

and V 1 n H is an essential surface in II. Suppose that there is a component 

A of (H - Vl)- which is an inner square (resp. annulus) in H and which 

meets a component B of V 1 n H which itself is also an inner square 

(resp. annulus) in H. Let U(B) be a regular neighbourhood of B in 

(NI,~I), and define V~ = (V 1 - U(B))-. Then V~ satisfies (ii), for V 1 

satisfies (ii) and since h]B u A is isotopic to the identity, by an isotopy 

in B u A which is constant on 3B - A. Thus, after finitely many steps, we 

obtain an admissible F-manifold with (i) and (ii). Removing trivial components 

from this F-manifold, we finally get a good submanifold. This completes the 

proof of 3.5. 

To continue the proof, let W be any good submanifold in (NI,~I) . A 

moment's reflection shows that we may suppose that W is chosen so that, for 

every good submanifold W' with W' c W, the essential surface W n H can 

be admissibly isotoped in H into W' n H. 

3.6. Assertion. W' can be admissibly isotoped in (NI,~]) so that 

afterwards 

W n H = d ( W  n H )  , 

where d : H ÷ H is the involution given by the reflections in the 

fibres of the product I-bundle U(F). 
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Define G = W n H, and suppose that G is in a very good position to 

dG . Of course, this position can always be obtained, using an admissible 

isotopic deformation of W in (Nl,~l). Denote by G' the essential 

intersection of G and dG , i.e. the largest essential surface contained 

in G n dG . Then, of course, (H - G')- is the essential union of (H - G)- 

and (H - dG)- 

U(F) is a product I-bundle. Setting X = U(F) and h = hIu(F), we see 

that we may apply 2.3. Hence it follows the existence of an admissible isotopy 

~t' t ~ I, of hIH, with ~t(H) = H and Ct(G) = G, for all t ~ I, such 

that ~I(H-G')- = id (H-G')-. 

Let G 1 be a component of G. It is easily checked that for 3.6. it 

suffices to show that G 1 can be admissibly contracted in H to a component 

of G' contained in G 1 (recall that W has property (i)). 

Case 1 G 1 is an inner square or annulus in H. 

It follows from the existence of the isotopy ~t that G 1 contains at 

least one component G~ of the essential intersection G' For otherwise, 

removing trivial components from (W - U(GI))- (if necessary) we obtain a 

good submanifold W' such that G cannot be admissibly isotoped into W n H 

(recall that G has the square- and annulus-property), where U(GI) is a 

regular neighbourhood of G 1 in (NI,~I) . This, however, contradicts our choice 

of W. Since G 1 is an essential surface, it is an inner square or annulus in 

H. Thus, of course, G 1 can be admissibly contracted in H to G[ . 

Case 2 G 1 is not an inner square or annulus in H. 

Recall that G 1 is a component of H n W. Let X be the component of 

which contains G I. Since we are in Case 2 and since W is an essential 

F-manifold, it follows that X is an I-bundle and that G 1 is one lid of X. 

+= 
Let p : X + B be the projection, and let G 1 (~X - p-l~B)-. Then G 1 

+ + + 
is a component of G 1 . Denote by e : G l ÷ G 1 the involution given by the 

reflections in the I-fibres of ×. As boundary-pattern of G~, we fix the 

boundary-pattern induced by ~0, together with the set of components of 
+ 

(~G~ - ~H)- . Then e is an admissible involution of G 1 . 

~r + G t Define G 1 = G' n G 1 . Since is the essential intersection of G 

and dG, G~ is an essential surface in H. Since G is in a very good 

position to dG, it follows that G l is even an essential surface in G 1 . 
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IT 
Moreover, we may suppose that W is admissibly isotoped so that G l is in a 

w 

very good position with respect to e(Gl). 

Since W is a good submanifold, we may suppose that h is admissibly 

isotoped so that h(W) = W and hl (H - W)- = id . In particular, hlX is an 

admissible homeomorphism of X. Setting h = hIX and G = G'l, we claim that 

2.3. may be applied. For this it remains to show that hlX can be admissibly 
vv - 

isotoped in X so that afterwards h I(G 1 - GI) = id . But this follows 

immediately from the existence of the admissible isotopy Ct of hlH defined 

in the beginning of 3.6. 

Now, by .3., hlX can be admissibly isotoped in X so that afterwards 

h p-lpR = id , where R is the essential union of (G~ - G"I-I ~ and 

(G~ - eG"~-i ~ . In general, however, this isotopy cannot be chosen to be 

constant on (~X - ~NI)- Therefore we also fix a regular neighbourhood U 

of (~X - ~NI)- "in X, and we define 

W' = (W-X) u p-lpR u U . 

Then it is easily checked that W' is an essential F-manifold in (NI,~I) with 

property (ii). Without loss of generality, W' also has property (i), i.e. 

W' is a good submanifold. For, if this is not the case, we simply have to add 

the components of (X - W')- to W' which are I-bundles over the square or 

annulus (recall that W has property (i)). 

By our choice of W, the essential surface H n W can be admissibly 
I 

isotoped in H into W n H. In particular, H n × can be admissibly isotoped 

into H n p-lpR. By definition of R, this implies that G 1 can be admissibly 

contracted to some component of G 1 n G'. 

This completes the proof of 3.6. 

Since, by 3.6., we may suppose that W n H = d(W n H), there is a system 

Z of I-bundles in U(F) with Z n H = W n H. The submanifold 

W = Wu Z 

consists of essential I-bundles, Seifert fibre spaces, and Stallings manifolds 

in (N0,~0) . 
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Since N O = M2i is a simple 3-manifold, the characteristic submanifold 

V 0 of (N0,n0) is trivial. Hence also W + is trivial, i.e. W + is 

contained in a regular neighbourhood of some sides of (N0,~0) (note that, 

by the suppositions of 3.3., N O is not a Stallings manifold and that, by 

i. of 1.2., ($W + - ~N0)- can be admissibly isotoped into V0). In particular 

H n W is contained in a regular neighbourhood of some sides of H. Hence it 

follows from property (ii) of W, that hIH can be admissibly isotoped in H 

into the identity. This completes the proof of 3.3. q.e.d. 
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